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In this paper, we present the construction of the Lattice Boltzmann method
equipped with the H-theorem. Based on entropy functions whose local equi-
libria are suitable to recover the Navier–Stokes equations in the framework of
the Lattice Boltzmann method, we derive a collision integral which enables
simple identification of transport coefficients, and which circumvents construc-
tion of the equilibrium. We discuss performance of this approach as compared
to the standard realizations.
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1. INTRODUCTION

The Lattice Boltzmann method (hereafter LBM) for simulations of
complex hydrodynamic phenomena has received much attention over the
past decade. (1) In the LBM, macroscopic equations are not addressed
directly by a conventional discretization procedure, rather fully discrete
kinetic models are constructed in such a way that (i) their long time, large
scale limit matches the macroscopic dynamics in question, and (ii) they
allow a relatively simple numerical implementation. In its present and
mostly used form, the LBM is based on (i) a polynomial ansatz with
tailored properties for the local equilibrium, and (ii) a single relaxation
time model (hereafter SRTM) for the relaxation (collision) term. The
SRTM has been borrowed from the well known Bhatnagar–Gross–Krook
approximation of the Boltzmann collision integral of the classical kinetic
theory. The resulting method is known as the LBGK model. (2, 3) However,



in spite of impressive evidences of successful applications of the present
realization of LBM, (1) theoretical development of the method is far from
being over. One of the problems, recognized by many authors, is the
problem of numerical stability. (1, 4, 5) For example, in the framework of the
LBM starting with the work (6) many simulations of high Reynolds number
flows has been successfully performed (see, for detail, refs. 1 and 7).
However, progress on stability may be needed to go beyond existing state
of the arts like spectral methods in simple geometries.

It has been discussed for some time in the literature (1, 4, 5, 8, 9) that
stability of the LBM could be improved if the method could be based on
an analog of the Boltzmann H-theorem. The goal of this work is to sum-
marize progress made in this direction in recent years. (4, 5, 8, 9) First, we will
present entropy functions which reproduces the correct hydrodynamics
within the accuracy of the Lattice Boltzmann method for a particular
choice of the Lattice. Next, based on the knowledge of these entropy func-
tions, we develop a realization of the Lattice Boltzmann method with the
H-theorem built in. We will discuss how using these entropy functions a
SRTM collision integral, which circumvents need of a polynomial ansatz
for the local equilibrium, can be constructed. Finally, some numerical tests
will be presented to show unconditional stability of this new class of the
Lattice Boltzmann models (ELBM hereafter). (5, 8, 9)

2. OVERVIEW OF THE LBM

In the Lattice Boltzmann method, (1) one considers populations of
fictitious particles f with ith component as fi(r, t), where i=1,..., b labels
discrete velocities ci. The set of discrete velocities, which can also include a
zero vector (‘‘rest population’’), is associated with outgoing links at each
site r of a regular isotropic lattice. Populations are updated at discrete time
steps t according to an equation,

fi(r+ci, t+1)−fi(r, t)=Di (1)

In the following, we shall restrict our attention to the isothermal Navier–
Stokes equation. For this case, the collision integral D must obey only the
local conservation laws,

O{1, ca} |DP={0, 0} (2)

where, we denote scalar product of b-dimensional vectors x and y as
Ox | yP=;b

i=1 xi yi, the Cartesian components of d-dimensional vector as
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a=1,..., d, and (1,..., 1) as 1. Local hydrodynamic quantities (the mass
density and the momentum density respectively) are defined as,

O{1, ca} | fP={r, rua} (3)

If the long-time large-scale limit of Eq. (1) recovers the Navier–Stokes
equation, then hydrodynamics is implemented in a fairly simple, fully
discrete kinetic picture. To do so, the most popular choice is Bhatnagar–
Gross–Krook approximation (hereafter BGK) for the collision integral
and a polynomial ansatz for the equilibrium distribution. With the BGK
approximation, the LBE equation (1) is given as

fi(r+ci, t+1)−fi(r, t)=−
1
2y
(fi(r, t)−f

eq
i (r, t)) (4)

The equilibrium distribution (f eq) are subjected to constraints fixed by
the hydrodynamic fields,

O{1, ca} | f eqP={r, rua} (5)

In addition, in order to recover the Navier–Stokes equation up to second-
order accuracy in u, the local equilibrium must respect the condition for the
stress tensor,

C
b

i=1
ciacibf

eq
i =ruaub+rc

2
sdab (6)

where cs is the speed of sound. Then a quadratic form of distribution func-
tion which satisfy these restriction is used.

3. ENTROPY FUNCTIONS FOR THE LBM

If the local equilibrium is supported by some entropy function, then
the Lattice Boltzmann method can be equipped with the H-theorem, (10, 11)

and stability problem can be studied in a controlled way. However, any
approach which attempts to enhance stability via an H-theorem, must be
able to recover the Navier–Stokes equations and the H-function must be
found by lattice-dependent considerations. (4) For the case of one-dimen-
sional three velocity and two-dimensional nine velocity lattice such entropy
functions are known (4) and are given here for the sake of the completeness.
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In the case of the one-dimensional lattice with spacing c, the velocity
set at each lattice site consists of three velocities, c+=c, c−=−c, and
c0=0. For this case entropy function is given as, (4)

H=f0 ln 1f0
4
2+f− ln(f−)+f+ ln(f+) (7)

In this particular case, it is actually possible to get analytically the equilib-
rium distribution.

feq0 =
2r
3
[2−`1+M2]

feq+=
r

3
5uc−c2s
2c2s

+`1+M26

feq−=
r

3
5−uc+c

2
s

2c2s
+`1+M26 (8)

where, the c2s=c
2/3 is the square of the sound velocity and M2=u2/c2s is

the Mach number squared. However, result (8) is the exclusive case which
does not happen in higher dimensions.

In a two-dimensional Cartesian coordinates system, for nine-velocity
lattice (2d9v) the entropy function is given as, (4)

H=f0 ln 1f0
8
2+C

4

l=1
fl ln 1fl

2
2+C

8

l=5
fl ln(2fl) (9)

where, the discrete velocity vector set c={cx, cy} is given as,

cx=(0, 1, 0, −1, 0, 1, −1, −1, 1)T (10)

cy=(0, 0, 1, 0, −1, 1, 1, −1, −1)T (11)

Local equilibria of these entropy functions satisfy the Eq. (6) up to the
order ofM4.

4. LBM BASED ON THE ENTROPY FUNCTION

Knowledge of the perfect entropy function suggests realizations of the
Lattice Boltzmann method which do not require an explicit expression for
the local equilibrium. In the subsequent section, we formulate one of such
realizations. Before doing this, however, we describe a general procedure
which equips any realization with the H-theorem. Let us assume that the
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collision integral D(f) in the kinetic equation (1) is realized in such a way
that it satisfies two conditions: (i) the conservation laws Eq. (2) (ii) the
entropy production inequality, ONH |DP [ 0, where NH is the gradient of
the entropy function, while the equality sign implies f=f eq. A collision
integral which meets these requirements will be termed admissible. For
instance, the standard BGK collision integral is admissible. For each pair
of vectors {f, D} such that fi \ 0, we introduce an auxiliary population
vector f g=f+agD. The scalar parameter ag is derived as follows: Let us
consider the equation

H(f)=H(f+aD) (12)

There are two cases classified by the number of solutions the Eq. (12) may
have. In the first case, Eq. (12) has two solutions, a1=0, and another
solution a2 (notice that the degeneracy, a2=a1=0, occurs only if f=f eq).
In this case, the parameter ag of the auxiliary population is taken as
ag=a2. This situation can be interpreted as the ‘‘bulk case’’ since both
vectors, f and f g, are located in the interior of the phase space of popula-
tions. The second (‘‘boundary’’) case corresponds to the situation when
Eq. (12) has only one (non-degenerate) solution a1=0. Then,

ag= min
i=1,..., b; Di < 0

{fi/|Di |} (13)

The auxiliary state f g is taken at the boundary of the phase space (at
least one of the populations fg

i is equal to zero).
The auxiliary population sets the limit of the collision update in such a

way that the entropy function H decreases in the result. Once the auxiliary
population f g is defined, the result of the collision is set as f(b)=
(1−b) f+bf g where b is a fixed parameter chosen on the segment [0, 1].
Convexity of the entropy function implies the following inequality (the
local H-theorem): H(f(b)) [H(f). Moreover, when approaching the
hydrodynamic regime, i.e., close enough to the local equilibrium, only the
bulk case is realized because f eq for Boltzmann-like entropy functions is a
positive vector. Then the parameter b controls the viscosity coefficient in
the resulting Navier–Stokes equations in the following way: The zero vis-
cosity limit corresponds to bQ 1. Thus, in the ELBM, population vector is
updated according to kinetic equation,

f(x+c, t+1)− f(x, t)=Dg[f(x, t)] (14)

where Dg is dressed (or stabilized ) collision integral,

Dg[f(x, t)]=ba[f(x, t)] D[f(x, t)] (15)
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Fig. 1. Stabilization procedure. Curves represent entropy levels, surrounding the local equi-
librium f eq. The solid curve L is the entropy level with the value H(f)=H(f g), where f is the
initial, and f g is the auxiliary population. The vector D represents the collision integral, the
sharp angle between D and the vector −NH reflects the entropy production inequality. The
point M is the solution to the Eq. (32). The result of the collision update is represented by the
point f(b). The choice of b shown corresponds to the ‘‘overrelaxation’’: H(f(b)) > H(M) but
H(f(b)) < H(f). The particular case of the BGK collision (not shown) would be represented
by a vector DBGK, pointing from f towards f eq, in which case M=f eq.

In other words, bare collision integrals are stripped off any relaxation
time parameters, and are merely directions in the space of populations,
pointing towards the change of the state in the collision event. Parameter a
defines the maximal admissible collision step along this direction so that
the entropy will not decrease. The combination (ba)−1 is the effective
relaxation time in the fully discrete kinetic picture. A graphical interpreta-
tion is provided in Fig. 1.

5. DERIVATION OF THE VISCOSITY

Identification of the viscosity coefficient in the ELBM is done on the
basis of the Chapman–Enskog analysis (12) in the vicinity of the local equi-
librium, in the same way as in the standard Lattice Boltzmann realizations.
We will specify the exact form of the collision integral in the next section,
but for now we assume that it is a member of the family of admissible
collision integrals.

Linearization of the dressed collision integral (15) may be written as,

dDg=ba(f eq) Ldf (16)

Here L is the linearized bare collision integral, and aeq=a(feq) is found
upon expanding equation (12) at equilibrium to the first nontrivial
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(quadratic) order. [Note that a substitution of f eq into Eq. (12) does not
give an equation for aeq. This is natural because, by its sense, aeq is a
relaxation parameter which can be only specified by considering deviations
from the equilibrium.] The result reads:

aeq=−
2Odf | NNH(f eq) |LdfP
OLdf | NNH(f eq) |LdfP

(17)

Here NNH(f eq) is the b×b matrix of second derivatives of the entropy
function at equilibrium. Equation (17) suggests that, in general, aeq has a
spectrum of values dependent on the direction along which the equilibrium
is approached. However, drastic simplification of Eq. (17) happens if L has
the projector property:

LL=−L (18)

In this case, relaxation parameter aeq becomes independent of the direction
in the phase space, along which the state relaxes to the equilibrium. This is
the essence of the SRTM which simply tells that all the b−n kinetic vari-
able relax to zero with the same rate. This important property is satisfied,
in particular, by the linearized bare BGK collision integral, and it has been
already demonstrated elsewhere (10) that in this case aeq=2. Thus, Eq. (16)
together with Eq. (18) defines the linearized dressed collision integral,

dDg=2bLgdf (19)

where, operator Lg has the projector property given by Eq. (18). With this
description of the linearized dressed collision integral, we now follow the
standard Chapman–Enskog analysis, and seek the solution to the kinetic
equation (14) in the form, f=f eq+df ne, where the nonequilibrium part df ne

is orthogonal to the hydrodynamic subspace, O{1, ca} | df neP={0, 0}, and
is found in terms of the expansion, df ne=Edf (1)+E2df (2)+O(E3), subject to
the multiscale expansion of the time and space derivatives, “t=E“

(1)
t +E

2
“
(2)
t

+O(E3), “a=E“
(1)
a +O(E

2). Then,

−2b C
j
Lg
ijdf

(1)
j =[“

(1)
t +cia“a] f

eq
i (20)

−2b C
j
Lg
ijdf

(2)
j =“

(2)
t f

eq
i +[“

(1)
t +cia“a]5−b C

j
Lg
ijdf

(1)
j +df

(1)
i
6 (21)
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By the Fredholm alternative, solution to Eq. (20) is written as,

df (1)=df (1)spec+df
(1)
hom (22)

where df (1)hom is the general solution to the homogeneous equation,
Lgdf (1)hom=0, and df (1)spec is a special solution to the inhomogeneous equation
(20). The homogeneous solution is equal to zero by the orthogonality con-
dition mentioned above.

Using the projector property (18), Eqs. (20) and (21) are equivalent to
the following two equations for the special solution (we omit the subscript
spec):

−2bdf (1)i =[“
(1)
t +cia“a] f

eq
i (23)

−2bdf (2)i =“
(2)
t f

eq
i +(1−b)[“

(1)
t +cia“a] df

(1)
i (24)

The latter set of equations coincides with the well known case of the
LBGK, in which the BGK relaxation parameter y−1 is replaced by 2b, and
we are immediately led to the following viscosity coefficient

n=
c2s (1−b)
2b

(25)

Thus, the ELBM is able to retain the full control over the viscosity, while
variation of the parameter b in the interval [0, 1] covers the full linear
stability interval.

Finally, it should be stressed that the theoretical derivation of the vis-
cosity coefficient is always strictly applicable only in the vicinity of the
local equilibrium.

6. THE SINGLE RELAXATION TIME MODEL FOR THE COLLISION

INTEGRAL

It is important to notice that simplification of the near-equilibrium
dynamics with the projector property [Eq. (18)] concerns solely the linear-
ized bare collision integral, but does not tell yet anything about situations
far from equilibrium. There might be many collision integrals which have
the same property [Eq. (18)] near equilibrium but different elsewhere. Our
goal is therefore to construct a nonlinear SRTM which has the desired
projector property [Eq. (18)] near equilibrium (and thus is equivalent to
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the linearized BGK), and requires only the knowledge of the entropy
function.

In order to construct the SRTM, we first write operator L with the
property (18) in terms of a given basis of the kinetic subspace gs:

L=−C
b−n

s=1
|gsPOgs | (26)

We seek the SRTM within the following family of admissible collision
integrals:

|DP=− C
b−n

s, p=1
|gsP Ksp(f)Ogp |NHP (27)

Here Ksp are elements of a positive definite (b−n)×(b−n) matrix K.
Functions Ksp may depend on the population vector, and any representa-
tive of the family (27) is admissible. A requirement that the linearization
of the collision integral (27) equals L (26) uniquely defines matrix K at
equilibrium:

K(f eq)=C−1(f eq)

Csp(f eq)=Ogs | NNH(f eq) |gpP
(28)

Finally, we need to extend the the matrix K(f eq) to arbitrary f. This exten-
sion is not unique but we suggest the most simple approach which amounts
to replacing f eq by f in the Eq. (28) to give

K(f)=C−1(f)

Csp(f)=Ogs | NNH(f) |gpP
(29)

Matrix C(f) is symmetric and positive definite for any f (the last statement
follows from the strict convexity of the entropy function for any f). Then
C−1 exists for any f, and it it is straightforward to prove that the resulting
matrix K(f) is positive definite for any f. In this case we find the nonlinear
SRTM given by Eqs. (27) and (29). Notice that the matrix K(f), and all the
other elements in Eq. (27), are well defined once only the entropy function
is known.

As far as the choice of the set of basis vectors is concerned, any
orthonormal set of basis vectors which lie in the null space of conservation
vectors will suffice. However, one would like to have a set of basis vector
which will make matrix C as sparse as possible. Our suggestion for basis
vector is,
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g1=
1

`6
(−2, 0, 0, 0, 0, 1, 0, 1, 0)T

g2=
1
2
(0, 1, −1, 1, −1, 0, 0, 0, 0)T

g3=
1

`30
(2, 0, 0, 0, 0, 2, −3, 2, −3)T

g4=
1

`12
(0, −2, 0, 2, 0, 1, −1, −1, 1)T

g5=
1

`12
(0, 0, −2, 0, 2, 1, 1, −1, −1)T

g6=
1

`180
(4, −5, −5, −5, −5, 4, 4, 4, 4)T

(30)

where, the conservation vectors are,

er=
1
3
(1, 1, 1, 1, 1, 1, 1, 1, 1)T

evx=
1

`6
(0, 1, 0, −1, 0, 1, −1, −1, 1)T

evy=
1

`6
(0, 0, 1, 0, −1, 1, 1, −1, −1)T

(31)

Using this choice of basis vector matrix C can be inverted analytically.

7. IMPLEMENTATION OF THE ENTROPY ESTIMATE

The next important point concerns solving the nonlinear equation
(12), which implements the discrete time H-theorem. Because the entire
ELBM is largely based on convexity of the entropy function, and also
because working with Boltzmann-like H-functions cannot tolerate any
nonpositivity of populations, it is desirable to avoid conventional methods
which do not respect positivity and convexity. Our approach to solve
Eq. (12) is based on a two-side estimate of the location of the nontrivial
root. The upper bound amax > 0 is the minimal solution to the equations,
fi+aDi=0, Di < 0. In geometrical terms, amax corresponds to the point on
the boundary of the kinetic polytope where the ray, f(a)=f+aD, a \ 0,
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intersects the boundary. Construction of the lower bound, amin, is based
on the earlier general study of the initial layer problem in dissipative
kinetics. (13, 14) Specifically, we consider another nonlinear equation,

ONH(f+aD) |DP=0 (32)

In geometrical terms, the unique solution to this equation, amin, defines
population vector fmin=f+aminD which is the minimum entropy state on
the ray f(a). Indeed, the minimum condition is the tangency point of the
ray to a level of entropy function (see Fig. 1). The nontrivial solution to
Eq. (12) is strictly in the interval [amin, amax]. In order to evaluate amin, we
have applied a quasi-Newton method of ref. 13 which guarantees successive
approximations, a (n)min, n=1,..., and for all n it is valid that 0 < a (n)min [ amin.
Moreover, the first approximation, a (1)min is known analytically [see ref. 13].
This estimate of lower bound is given as,

a (1)min=
1− exp(−s/q)
m+n exp(−s/q)

(33)

with,

the entropy production s=−ONH |DP (34)

the maximum loss in the population m=max(D−i /fi) (35)

the total gain in the population n=
1
q
C
(D+i )

2

fi
(36)

and the normalization factor q=C D+i (37)

where, the collision integral D is partitioned in positive (D+) and negative
(−D−) parts such that,

D+j=˛
Dj if Dj > 0

0 else (38)

and,

D−j=˛
−Dj if Dj < 0

0 else (39)

This estimate for a (1)min guarantees that the solution is located strictly inside
the interval [a (1)min, amax]. Starting with this bound for the root, the bisection
method has been implemented. The present algorithm of solving for the
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entropy condition [Eq. (12)] guarantees that positivity of populations is
not violated.

The method of implementation for the entropy estimate described
above is quite general. The method can be implemented for any entropy
function. However, in the present case we know that a should be very close
to 2. Using this information, we have refined the root solver by using a
combination of the Newton–Raphson method and of the bisection method,
which usually converges to the root in less than 10 iteration. This mini-
mizes computational overhead for solving the nonlinear equation.

In general, the ELBM has to perform two extra steps in comparison to
the LBGK scheme. The first step is computation of the bare collision
integral, Eq. (29). The second step is to solve the nonlinear equation (12).
Both of these operations scale linearly with the number of lattice nodes.

At each time step, the root solving will require b×N×X evaluation
of the function fi log(Cifi). The collision integral in Eq. (29) require N
times evaluation and inversion of a symmetric positive definite matrix
of dimension (b−M)×(b−M). This is of the order O(N(b−M)3/6+
(b−M)(b−M+1)/2) operation. Here X is the number of iteration
required to solve Eq. (12), and M is the number of the conservation laws.
Notice that the collision matrix in the standard LBGK is diagonal and any
improvement over LBGK has to deal at least with the evaluation of the
collision matrix of the size (b−M)×(b−M). One such example is the
recently proposed method (15) based on the linear stability analysis. To give
a reader a concrete feel of the numbers involved, on a Sun workstation for
a grid size of 21×21 doing 10000 time steps simulation with the present
scheme took around 130 seconds while with the BGK time involved was
around 13 seconds. A BGK simulation of 10000 time steps for a grid size
of 63×63 took around 120 seconds. Thus, the present scheme is an order
of magnitude slower compared to the BGK. In the present scheme around
80% of the time is spent for evaluating the collision operator. On the other
hand, time required to solve for the entropy estimates contributes only
around 5–10% to the total computation time. In the present work, we have
focused on the optimization of the entropy estimate, optimization of the
collision operator is left for the future work.

8. SOME NUMERICAL RESULTS

8.1. Shock Tube Tests

The first example presented here is from ref. 5, the time evolution of a
one-dimensional front in a shock tube, a very classical problem in which
it appears a compressive shock front moving in the low density and a
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rare-faction front moving in the high density region. These two fronts leave
an intermediate region in the central portion of the tube with uniform
density rc, and uniform velocity uc. The tube is filled at time t=0 with a
gas at rest with uniform density r−(u−=0) for x < 0, and r+(u+=0) for
x > 0. For the inviscid case, n=0, the density and the velocity profiles
present a discontinuity across the shock.

Simulations were performed in order to compare the stability of the
three LBM algorithms: The nonlinear LBM (16) (LBE hereafter), the LBGK
method with the polynomial equilibrium ansatz, (3) and the present ELBM
algorithm.

At t=0 the lattice was populated as to give the density r−=1.5 for
0 [ x [ 400, and r+=0.75 for 400 < x [ 800. Standard bounce back
boundary conditions were applied at both ends of the tube. Results for the
three algorithms are demonstrated in Figs. 2 and 3 for a relatively high
value of viscosity n=3.3333×10−2. It has been found that the LBGK and
the ELBM never showed divergence even when the viscosity was smaller
than n < 10−3. However, in contrast to the ELBM, the results of the LBGK
demonstrate large fluctuations already at n < 1. For this reason, results of
the ELBM were always better in comparison to the LBGK at low viscosity.

8.2. Two-Dimensional Simulations

To compare the present algorithm with the standard LBGK method,
we have chosen the setup of the two-dimensional Poiseuille flow. Stability
of both the schemes has been investigated with respect to various pertur-
bations. In the first set of experiments, non-hydrodynamic perturbations
were used, keeping mean velocity at each node intact. In particular, popu-
lations at the different nodes were perturbed by a small amount in a way
similar to that proposed in ref. 17 for fluctuating hydrodynamics. However,
noise is switched on only at a fixed time t0, typically after the velocity
profile has been developed up to its steady state (parabolic) shape.

In another set of numerical experiments, the fully developed velocity
profile has been perturbed by adding a small amount of velocity uy at each
node, at time t0, in a way consistent with the boundary conditions. We
have tried two different perturbations, one which respect divergence
freedom of the incompressible fluid and the other one which do not respect
this condition. In particular, the following perturbations have been used
(the origin of the coordinate system is at the central node at the inlet, the
reduced x coordinate, −1 [ x [ 1 is taken across the channel):

d(ruy)=0.005uy max sin(wpy)

d(rux)=0
(40)

Entropy Function Approach to the Lattice Boltzmann Method 303



0 100 200 300 400 500 600 700 800
0.5

1

1.5

    X

0 100 200 300 400 500 600 700 800
0.5

1

1.5

de
ns

ity

0 100 200 300 400 500 600 700 800
0.5

1

1.5

ELBM 

LBGK 

LBE 

Fig. 2. Density profile for a One-dimensional shock tube simulation (dimensionless lattice
units) at t=500 for viscosity n=3.3333×10−2. Thin line: Exact solution. Symbol: Simulation.
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Fig. 3. Velocity profile. Simulation setup and notation same as in Fig. 2.
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and,

d(ruy)=0.005uy max sin(wpy)

d(rux)=−0.005wpxuy max cos(wpy)
(41)

for all the nodes except for the bounce-back nodes. On the nodes where the
bounce-back has been applied, the perturbation has been set equal to zero,
d(ruy)=d(rux)=0. The first perturbation [Eq. (40)] does not respect the
divergence freedom of the incompressible fluid, while the second perturba-
tion [Eq. (41)] respect the divergence condition. In all experiments, the
excess total kinetic energy, DE(t)=; r [u2(r, t0+t)−u2(r, t0)], has been
monitored for t \ t0. The present scheme demonstrates a rapid decay of the
excess kinetic energy (as it should be), whereas |DE| grows in the LBGK
scheme [see Figs. 4–6].

The present algorithm is unconditionally stable, and for arbitrary low
values of the viscosity never runs into the overflow, while the minimal
value of the viscosity at which the standard LBGK algorithm converges
back to the correct fully developed velocity profile is of the order of
nLBGKmin ’ 10−3. We have also tested the stability of the LBGK against the
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Fig. 4. Time behavior of the excess kinetic energy DE after a random perturbation in the
population. (A) ELBM, n=8.3752×10−4 (b=0.995), uy max=1.8059×10−3. (B) LBGK,
n=8.3752×10−4 (b=0.995), uy max=1.805925×10−3. The curve terminates after an overflow
at t % 105.
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random perturbation by doubling the number of nodes in each direction.
The stability of the LBGK has not improve by this increase in the system
size.

9. CONCLUSION

We have demonstrated how the Lattice Boltzmann method can be
equipped with the H-theorem to enhance its stability. We have shown that
for realization of LBM an explicit knowledge of equilibrium distribution
is not necessary, only the knowledge entropy function is sufficient to con-
struct the algorithm. Further development of the Lattice Boltzmann
modeling can be based on the construction of the entropy function specific
to the physical problem under consideration.

A few concluding remarks to compare the present work with the work
of Boghosian et al. (9) are in order. First, the main goal of their work was to
give a general description of the kinetic polytopes, whereas our focus is on
the implementation of the ELBM for a specific choice of the entropy func-
tion which recovers the Navier–Stokes equation. Second, in the work (9)

solving numerically for the equilibrium distribution function at each time
step is proposed, while in the present work a new collision operator is
proposed which circumvents the need for solving a set of non-linear equa-
tions at each time step to get the equilibrium distribution function. Finally
we have introduced a solver for the entropy estimate which guarantees
positivity of the populations.
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